Article

Lacunary series expansions in hyperholomorphic $F_{G}^{\alpha}(p, q, s)$ spaces

Alaa Kamal ${ }^{1,2}$ and Taha Ibrahim Yassen ${ }^{3, *}$
1 Port Said University, Faculty of Science, Department of Mathematics Port Said, 42511, Egypt.; alaa_mohamed1@yahoo.com
2 Qassim University, College of Sciences and Arts in Muthnib, Department of Mathematics, 51431, KSA.
3 The Higher Engineering Institute in Al-Minia, Mania,61111, Egypt.
* Correspondence: taha_hmour@yahoo.com

Received: 12 March 2019; Accepted: 3 July 2019; Published: 19 October 2019.

Abstract

In this paper we define a new class of hyperholomorphic functions, which is known as $F_{G}^{\alpha}(p, q, s)$ spaces. We characterize hyperholomorphic functions in $F_{G}^{\alpha}(p, q, s)$ space in terms of the Hadamard gap in Quaternion analysis.

Keywords: Quaternionic analysis, $F_{G}^{\alpha}(p, q, s)$ spaces, lacunary Series.
MSC: 30G35, 46E15.

1. Introduction

Quaternions were introduced for the first time by William Rowan Hamilton in 1843 [1].The generalizations of the theory of holomorphic functions in one complex variable is known as Quaternion analysis [2-5]. Quaternions are also recognized as a powerful tool for modeling and solving problems in theoretical as well as applied mathematics [6]. The emergence of a large of software packages to perform computations in the algebra of the real quaternions [7], or more generally, Clifford algebra has been enhanced by the increasing interest in using quaternions and their applications in almost all applied sciences [8,9].

Definition 1. Let $0<p<\infty,-2<q<\infty$ and $0<s<\infty$ and let f be an analytic function in \mathbb{D}. If

$$
\|f\|_{F(p, q, s)}^{p}=\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} g^{s}(z, a) d A(z)<\infty,
$$

then $f \in F(p, q, s)$. Moreover, if

$$
\lim _{|a| \rightarrow 1} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} g^{s}(z, a) d A(z)=0
$$

then $f \in F_{0}(p, q, s)$.
To introduce the meaning of hyperholomorphic functions, let \mathbb{H} be the skew field of quaternions. The element $w \in \mathbb{H}$ can be written in the form:

$$
w=w_{0}+w_{1} i+w_{2} j+w_{3} k, \quad w_{0}, w_{1}, w_{2}, w_{3} \in \mathbb{R},
$$

where $1, i, j, k$ are the basis elements of \mathbb{H}. For these elements we have the multiplication rules

$$
i^{2}=j^{2}=k^{2}=-1, i j=-j i=k, k j=-j k=i, k i=-i k=j .
$$

The conjugate element \bar{w} is given by $\bar{w}=w_{0}-w_{1} i-w_{2} j-w_{3} k$, and we have the property

$$
w \bar{w}=\bar{w} w=\|w\|^{2}=w_{0}^{2}+w_{1}^{2}+w_{2}^{2}+w_{3}^{2} .
$$

Moreover, we can identify each vector $\vec{x}=\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{R}^{3}$ with a quaternion x of the form

$$
x=x_{0}+x_{1} i+x_{2} j
$$

We will work in the unit ball in the real three-dimensional space, $\mathbb{B}_{1}(0) \subset \mathbb{R}^{3}$. We will consider functions f defined on $\mathbb{B}_{1}(0)$ with values in \mathbb{H}. We define a generalized Cauchy-Riemann operator D and it's conjugate \bar{D} by

$$
D f=\frac{\partial f}{\partial x_{0}}+i \frac{\partial f}{\partial x_{1}}+j \frac{\partial f}{\partial x_{2}}
$$

and

$$
\bar{D} f=\frac{\partial f}{\partial x_{0}}-i \frac{\partial f}{\partial x_{1}}-j \frac{\partial f}{\partial x_{2}}
$$

For these operators, we have

$$
D \bar{D}=\bar{D} D=\Delta_{3}
$$

where Δ_{3} is the Laplacian for functions defined over domains in \mathbb{R}^{3}. We denote by $\varphi_{a}(x)=(a-x)(1-$ $\bar{a} x)^{-1},|a|<1$, the Möbius transform, which maps the unit ball onto itself.

Let

$$
g(x, a)=\frac{1}{4 \pi}\left(\frac{1}{\left|\varphi_{a}(x)\right|}-1\right)
$$

be the modified fundamental solution of the Laplacian in \mathbb{R}^{3}. Let $f: \mathbb{B} \mapsto \mathbb{H}$ be a hyperholomorphic function. Then [4]:

- $\mathcal{B}(f)=\sup _{x \in \mathbb{B}}\left(1-|x|^{2}\right)^{3 / 2}|\bar{D} f(x)|$,
- $Q_{p}(f)=\sup _{a \in \mathbb{B}} \int_{\mathbb{B}}|\bar{D} f(x)|^{2} g^{p}(x, a) d \mathbb{B}_{x}$.

Definition 2. Let $0<\alpha<\infty$. The hyperholomorphic α-Bloch space is defined as follows (see[2]):

$$
\mathcal{B}^{\alpha}=\left\{f \in \operatorname{ker} D: \sup _{x \in \mathbb{B}}\left(1-|x|^{2}\right)^{\frac{3 x}{2}}|\bar{D} f(x)|<\infty\right\}
$$

The little α-Bloch type space \mathcal{B}_{0}^{α} is a subspace of \mathcal{B} consisting of all $f \in \mathcal{B}^{\alpha}$ such that

$$
\lim _{|x| \rightarrow 1^{-}}\left(1-|x|^{2}\right)^{\frac{3 x}{2}}|\bar{D} f(x)|=0
$$

Definition 3. ([10]) Let f be quaternion-valued function in \mathbb{B}. For $0<p<\infty,-2<q<\infty$ and $0<s<\infty$. If

$$
\|f\|_{F(p, q, s)}^{p}=\sup _{a \in \mathbb{B}} \int_{\mathbb{B}}|\bar{D} f(x)|^{p}\left(1-|x|^{2}\right)^{\frac{3 q}{2}}\left(1-\left|\varphi_{a}(x)\right|^{2}\right)^{s} d \mathbb{B}_{x}<\infty,
$$

then $f \in F(p, q, s)$. Moreover, if

$$
\lim _{|a| \rightarrow 1} \int_{\mathbb{B}}|\bar{D} f(x)|^{p}\left(1-|x|^{2}\right)^{\frac{3 q}{2}}\left(1-\left|\varphi_{a}(x)\right|^{2}\right)^{s} d \mathbb{B}_{x}=0
$$

then $f \in F_{0}(p, q, s)$.
The green function in \mathbb{R}^{3} is defined as (see [11]):

$$
G(x, a)=\frac{1-\left|\varphi_{a}(x)\right|^{2}}{|1-\bar{a} x|}
$$

We introduce following new definition of so called hyperholomorphic $F_{G}^{\alpha}(p, q, s)$ spaces.
Definition 4. Let $1<\alpha, p<\infty,-2<q<\infty$, and $s>0$. Assume that f be hyperholomorphic function in the unit ball $\mathbb{B}_{1}(0)$. Then, $f \in F_{G}^{\alpha}(p, q, s)$, if

$$
F_{G}^{\alpha}(p, q, s)=\left\{f \in \operatorname{ker} D: \sup _{a \in \mathbb{B}_{1}(0)} \int_{\mathbb{B}_{1}(0)}|\bar{D} f(x)|^{p}\left(1-|x|^{2}\right)^{3 \alpha q 2+2 s}(G(x, a))^{s} d \mathbb{B}_{x}<\infty\right\}
$$

The space $F_{G, 0}^{\alpha}(p, q, s)$ is subspace of $F_{G}^{\alpha}(p, q, s)$ consisting of all functions $f \in F_{G}^{\alpha}(p, q, s)$, such that

$$
\lim _{|a| \rightarrow 1^{-}} \int_{\mathbb{B}_{1}(0)}|\bar{D} f(x)|^{p}\left(1-|x|^{2}\right)^{\frac{3 x q}{2}+2 s}(G(x, a))^{s} d \mathbb{B}_{x}=0
$$

Our objective in this article is twofold. First, we study the generalized quaternion space $F_{G}^{\alpha}(p, q, s)$ and characterize their relations to the quaternion \mathcal{B}_{0}^{α}. Second, characterizations $F_{G}^{\alpha}(p, q, s)$ function space by the coefficients of Hadamard gap expansions. The following lemma, we will need in the sequel:

Lemma 5. [12]. Let $0<R<1,1<q, a \in \mathbb{B}_{1}(0)$ and $f: \mathbb{B}_{1}(0) \longrightarrow \mathbb{H}$ be a hyperholomorphic function. Then

$$
|\bar{D} f(a)|^{q} \leq \frac{3 \cdot 4^{2+q}}{\pi R^{3}\left(1-R^{2}\right)^{2 q}\left(1-|a|^{2}\right)^{3}} \int_{\mathcal{M}(a, R)}|\bar{D} f(x)|^{q} d \mathbb{B}_{x} .
$$

2. Power series expansions in \mathbb{R}^{3}

The major difference to power series in the complex case consists in the absence of regularity of the basic variable $x=x_{0}+x_{1} i+x_{2} j$ and of all of its natural powers $x^{n}, n=2,3, \ldots$. This means that we should expect other types of terms, which could be designated as generalized powers. We use a pair $\underline{y}=\left(y_{1}, y_{2}\right)$ of two regular variables given by

$$
y_{1}=x_{1}-i x_{0} \text { and } y_{2}=x_{2}-j x_{0}
$$

and a multi-index $v=\left(v_{1}, v_{2}\right),|v|=\left(v_{1}+v_{2}\right)$ to define the v-power of y by a $|v|$-ary product $[5,13,14]$.
Definition 6. Let v_{1} elements of the set $a_{1}, \ldots, a_{|v|}$ be equal to y_{1} and v_{2} elements be equal to y_{2}. Then the v-power of \underline{y} is defined by

$$
\begin{equation*}
\underline{y}:=\frac{1}{|v|!} \sum_{\left(i_{1}, \ldots, i_{|v|}\right) \in \pi(1, \ldots|v|)} a_{i 1} a_{i 2} \ldots a_{i_{|v|}} \tag{1}
\end{equation*}
$$

where the sum runs over all permutations of $(1, \ldots .,|v|)$.
The general form of the Taylor series of left monogenic functions in the neighborhood of the origin is given as [14]:

$$
\begin{equation*}
P(\underline{y}):=\sum_{n=0}^{\infty}\left(\sum_{|v|=n} \underline{y}^{v} c_{v}\right), \quad c_{v} \in \mathbb{H} \tag{2}
\end{equation*}
$$

Theorem 7. [5,15]) Let $g(x)$ be left hyperholomorphic with the Taylor series (2). Then

$$
\begin{equation*}
\left|\frac{1}{2} \bar{D} g(x)\right| \leq \sum_{n=1}^{\infty} n\left(\sum_{|v|=n}\left|c_{v}\right|\right)|x|^{n-1} \tag{3}
\end{equation*}
$$

We introduce the notation $\mathbf{H}_{n}(x):=\sum_{|v|=n} \underline{y}^{|v|} \mathcal{C}_{v}$ and consider monogenic functions composed by $\mathbf{H}_{n}(x)$ in the following form:

$$
f(x)=\sum_{n=0}^{\infty} \mathbf{H}_{n}(x) b_{n}, \quad b_{n} \in \mathbb{H}
$$

Using (3), we have

$$
\begin{equation*}
\left|\frac{1}{2} \bar{D} f(x)\right| \leq \sum_{n=1}^{\infty} n\left(\sum_{|v|=n}\left|c_{v}\right|\right)\left|b_{n}\right||x|^{n-1} \tag{4}
\end{equation*}
$$

This is the motivation for another notation,

$$
\begin{equation*}
a_{n}:=\left(\sum_{|v|=n}\left|c_{v}\right|\right)\left|b_{n}\right| \quad\left(a_{n} \geq 0\right) \tag{5}
\end{equation*}
$$

finally, we have

$$
\begin{equation*}
\left|\frac{1}{2} \bar{D} f(x)\right| \leq \sum_{n=1}^{\infty} n a_{n}|x|^{n-1} \tag{6}
\end{equation*}
$$

3. Lacunary series expansions in $F_{G}^{\alpha}(p, q, s)$ spaces

In this section, we give a sufficient and necessary condition for the hyperholomorphic function f on $\mathbb{B}_{1}(0)$ of \mathbb{R}^{3} with Hadamard gaps to belong to the weighted hyperholomorphic $F_{G}^{\alpha}(p, q, s)$ spaces. The function

$$
\begin{equation*}
f(r)=\sum_{k}^{\infty} a_{k} r^{n_{k}} \quad\left(n_{k} \in \mathbb{N} ; \forall k \in \mathbb{N}\right) \tag{7}
\end{equation*}
$$

belong to the Hadamard gap class (Lacunary series) if there exists a constant $\lambda>1$ such that $\frac{n_{k+1}}{n_{k}} \geq \lambda, \forall k \in \mathbb{N}$. Characterizations in higher dimensions using several complex variables and quaternion sense [16-18].

Theorem 8. Let $f(r)=\sum_{n=1}^{\infty} a_{n} r^{n}$, with $a_{n} \geq 0$. If $\alpha>0, p>0$. Then

$$
\begin{equation*}
\int_{0}^{1}(1-r)^{\alpha-1}(f(r))^{p} d r \approx \sum_{n=0}^{\infty} 2^{-n \alpha} t_{n}^{p} \tag{8}
\end{equation*}
$$

where $t_{n}=\sum_{k \in I_{n}} a_{k}, n \in \mathbb{N}, I_{n}=\left\{k: 2^{n} \leq k<2^{n+1} ; k \in \mathbb{N}\right\}$.
Proof. The prove of this theorem can be obtained easily from Theorem 2.5 of [19] with the same steps.
Theorem 9. Let $\alpha, p \geq 1,-2<q<\infty, s>0$, and $I_{n}=\left\{k: 2^{n} \leq k<2^{n+1} ; k \in \mathbb{N}\right\}$. Suppose that $f(x)=$ $\sum_{n=0}^{\infty} H_{n}(x) b_{n}, b_{n} \in \mathbb{H}$, where $H_{n}(x)$ be homogenous hyperholomorphic polynomials of degree n, and let a_{n} be define as before in (5). If

$$
\begin{equation*}
\sum_{n=0}^{\infty} 2^{-n\left(\frac{3}{2} \alpha q+s-p+1\right)}\left(\sum_{k \in I_{n}}\left|a_{k}\right|\right)^{p}<\infty \tag{9}
\end{equation*}
$$

then

$$
\begin{equation*}
\sup _{a \in \mathbb{B}_{1}(0)} \int_{\mathbb{B}_{1}(0)}\left|\frac{1}{2} \bar{D} f(x)\right|^{p}\left(1-|x|^{2}\right)^{\frac{3 \alpha q}{2}+2 s}(G(x, a))^{s} d \mathbb{B}_{x}<\infty, \tag{10}
\end{equation*}
$$

and $f \in F_{G}^{\alpha}(p, q, s)$.
Proof. Suppose that (9) holds. Using the equality

$$
\begin{equation*}
G(x, a)=\frac{1-\left|\varphi_{a}(x)\right|^{2}}{|1-\bar{a} x|}=\frac{\left(1-|a|^{2}\right)\left(1-|x|^{2}\right)}{|1-\bar{a} x|^{3}} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
1-|x| \leq|1-\bar{a} x| \leq 1+|x|, \quad 1-|a| \leq|1-\bar{a} x| \leq 1+|a| \leq 2 \tag{12}
\end{equation*}
$$

Then, we get

$$
\begin{align*}
& \int_{\mathbb{B}_{1}(0)}\left|\frac{1}{2} \bar{D} f(x)\right|^{p}\left(1-|x|^{2}\right)^{\frac{3 a q}{2}}+2 s(G(x, a))^{s} d \mathbb{B}_{x} \\
& =\int_{\mathbb{B}_{1}(0)}\left|\frac{1}{2} \bar{D}\left(\sum_{n=0}^{\infty} H_{n}(x) b_{n}\right)\right|^{p}\left(1-|x|^{2}\right)^{\frac{3 a q}{2}+2 s} \frac{\left(1-|a|^{2}\right)^{s}\left(1-|x|^{2}\right)^{s}}{|1-\bar{a} x|^{3 s}} d \mathbb{B}_{x} \\
& \leq \int_{\mathbb{B}_{1}(0)}\left(\sum_{n=0}^{\infty} n a_{n} x^{n-1}\right)^{p}\left(1-|x|^{2}\right)^{\frac{3 a q}{2}+2 s} \frac{\left(1-|a|^{2}\right)^{s}\left(1-|x|^{2}\right)^{s}}{(1-|a|)^{s}(1-|x|)^{s s}} d \mathbb{B}_{x} \\
& \leq 2^{\frac{3 a q}{2}+4 s} \int_{0}^{1}\left(\sum_{n=0}^{\infty} n a_{n} r^{n-1}\right)^{p}(1-r)^{3 a q 2+s} r^{2} d r \\
& \leq \lambda \int_{0}^{1}\left(\sum_{n=0}^{\infty} n a_{n} r^{n-1}\right)^{p}(1-r)^{\frac{3 a q}{2}+s} d r . \tag{13}
\end{align*}
$$

Using Theorem 8 in (13), we deduced that

$$
\begin{align*}
\int_{\mathbb{B}_{1}(0)}\left|\frac{1}{2} \bar{D} f(x)\right|^{p}\left(1-|x|^{2}\right)^{\frac{3 a q}{2}+2 s}(G(x, a))^{s} d \mathbb{B}_{x} & \leq \lambda \int_{0}^{1}\left(\sum_{n=0}^{\infty} n a_{n} r^{n-1}\right)^{p}(1-r)^{\frac{3 a q}{2}+s} d r \\
& \leq \lambda \sum_{n=0}^{\infty} 2^{-n(3 a q 2+s+1)} t_{n}^{p} . \tag{14}
\end{align*}
$$

Since

$$
t_{n}=\sum_{k \in I_{n}} k a_{k}<2^{n+1} \sum_{k \in I_{n}} a_{k},
$$

we obtain that,

$$
\int_{\mathbb{B}_{1}(0)}\left|\frac{1}{2} \bar{D} f(x)\right|^{p}\left(1-|x|^{2}\right)^{\frac{3 a q}{2}+2 s}(G(x, a))^{s} d \mathbb{B}_{x} \leq \lambda_{1} \sum_{n=0}^{\infty} 2^{-n\left(\frac{3 a q}{2}+s-p+1\right)}\left(\sum_{k \in I_{n}}\left|a_{k}\right|\right)^{p} .
$$

Therefore, we have

$$
\|f\|_{F_{G}^{\alpha}(p, q, s)} \leq \lambda_{1} \sum_{n=0}^{\infty} 2^{-n\left(\frac{3 a q}{2}+s-p+1\right)}\left(\sum_{k \in I_{n}}\left|a_{k}\right|\right)^{p}<\infty,
$$

where λ_{1} is a constant. Then, the last inequality implies that $f \in F_{G}^{\alpha}(p, q, s)$ and the proof of our theorem is completed.

For the converse of Theorem 9, we consider the following theorem.
Proposition 10. (see [5]) Let $\alpha=\left(\alpha_{1}, \alpha_{2}\right), \alpha_{i} \in \mathbb{R}, i=1,2$ be the vector of real coefficients defining $\mathrm{H}_{n, \alpha}(x)=$ $\left(y_{1} \alpha_{1}+y_{2} \alpha_{2}\right)^{n}$. Suppose that $|\alpha|^{2}=\alpha_{1}^{2}+\alpha_{2}^{2} \neq 0$. Then,

$$
\begin{equation*}
\left\|\mathrm{H}_{n, \alpha}\right\|_{L_{p}\left(\partial \mathbb{B}_{1}\right)}^{p}=2 \pi \sqrt{\pi}|\alpha|^{n p} \frac{\Gamma\left(\frac{n}{2} p+1\right)}{\Gamma\left(\frac{n}{2} p+\frac{3}{2}\right)} \text {, where } 0<p<\infty . \tag{15}
\end{equation*}
$$

Moreover, we have (see [5])

$$
\begin{equation*}
\frac{\left\|-\frac{1}{2} \bar{D} \mathrm{H}_{n, \alpha}\right\|_{L_{p}\left(\partial \mathbb{B}_{1}\right)}^{p}}{\left\|\mathrm{H}_{n, \alpha}\right\|_{L_{p}\left(\partial \mathbb{B}_{1}\right)}^{p}}=n^{p} \frac{\mathbf{B}\left(\frac{1}{2}, \frac{n-1}{2} p+1\right)}{\mathbf{B}\left(\frac{1}{2}, \frac{n}{2} p+1\right)} \geq \lambda n^{p}>0 \tag{16}
\end{equation*}
$$

where, $\mathbf{B}\left(\frac{1}{2}, \frac{n-1}{2} p+1\right)=\frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n-1}{2} p+1\right)}{\Gamma\left(\frac{n-1}{2} p+\frac{3}{2}\right)}$, and $\lim _{n \rightarrow \infty} \frac{\mathbf{B}\left(\frac{1}{2}, \frac{n-1}{2} p+1\right)}{\mathbf{B}\left(\frac{1}{2}, \frac{n}{2} p+1\right)}=1$.

Corollary 11. [5] Assume that $p \geq 2$. Then,

$$
\begin{equation*}
\frac{\left\|-\frac{1}{2} \bar{D} \mathrm{H}_{n, \alpha}\right\|_{L_{2}\left(\partial \mathbb{B}_{1}\right)}^{2}}{\left\|\mathrm{H}_{n, \alpha}\right\|_{L_{p}\left(\partial \mathbb{B}_{1}\right)}^{2}} \geq \lambda n^{\frac{2+3 p}{2 p}} \tag{17}
\end{equation*}
$$

Theorem 12. Let $\alpha \geq 1,2 \leq p<\infty,-2<q<\infty, s>0$, and $0<|x|=r<1$. If

$$
\begin{equation*}
f(x)=\left(\sum_{n=0}^{\infty} \frac{\mathrm{H}_{n, \alpha}}{\left(1-|x|^{2}\right)^{\frac{8 s+p}{4 p}}\left\|\mathrm{H}_{n, \alpha}\right\|_{L_{p}\left(\partial \mathbb{B}_{1}\right)}} a_{n}\right) \in F_{G}^{\alpha}(p, q, s) . \tag{18}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\sum_{n=0}^{\infty} 2^{-n\left(\frac{3}{2} \alpha q+s-p+1\right)}\left(\sum_{k \in I_{n}}\left|a_{k}\right|\right)^{p}<\infty \tag{19}
\end{equation*}
$$

Proof. Since

$$
\begin{align*}
\|f\|_{F_{G}^{\alpha}(p, q, s)} & =\sup _{a \in \mathbb{B}_{1}(0)} \int_{\mathbb{B}_{1}(0)}|\bar{D} f(x)|^{p}\left(1-|x|^{2}\right)^{\frac{3 \alpha q}{2}+2 s}(G(x, a))^{s} d \mathbb{B}_{x} \\
& =\sup _{a \in \mathbb{B}_{1}(0)} \int_{\mathbb{B}_{1}(0)}|\bar{D} f(x)|^{p}\left(1-|x|^{2}\right)^{\frac{3 \alpha q}{2}+2 s}\left(\frac{\left(1-|x|^{2}\right)\left(1-|a|^{2}\right)}{|1-\bar{a} x|^{3}}\right)^{s} d \mathbb{B}_{x} \\
& \left.\geq \sup _{a \in \mathbb{B}_{1}(0)} \int_{\mathbb{B}_{1}(0)}|\bar{D} f(x)|^{p}\left(1-|x|^{2}\right)^{\frac{3 \alpha q}{2}+3 s} d \mathbb{B}_{x} \quad \quad \quad \text { where } a=0\right) . \tag{20}
\end{align*}
$$

Hence, we have

$$
\begin{align*}
\|f\|_{F_{G}^{\alpha}(p, q, s)} & \geq \int_{\mathbb{B}_{1}(0)}\left|-\frac{1}{2} \bar{D} f(x)\right|^{p}\left(1-|x|^{2}\right)^{\frac{3 \alpha q}{2}+3 s} d \mathbb{B}_{x} \quad(\text { where } a=0) \\
& =\int_{\mathbb{B}_{1}(0)}\left|\sum_{n=0}^{\infty}\left[\frac{-\frac{1}{2} \bar{D} \mathrm{H}_{n, \alpha}}{\left(1-|x|^{2}\right)^{\frac{8 s+p}{4 p}}\left\|\mathrm{H}_{n, \alpha}\right\|_{L_{p}\left(\partial \mathbb{B}_{1}\right)}}\right] a_{n}\right|^{p}\left(1-|x|^{2}\right)^{\frac{3 \alpha q}{2}+3 s} d \mathbb{B}_{x} . \tag{21}
\end{align*}
$$

where $\left[\frac{-\frac{1}{2} \bar{D} H_{n, \alpha}}{\left.\left\|\mathrm{H}_{n, \alpha}\right\|_{L p} \partial \mathbb{B}_{1}\right)}\right]$ is a homogeneous hyperholomorphic polynomial of degree $n-1$ and it can be written in the form

$$
\begin{equation*}
\left[\frac{-\frac{1}{2} \bar{D} \mathrm{H}_{n, \alpha}}{\left\|\mathrm{H}_{n, \alpha}\right\|_{L_{p}\left(\partial \mathbb{B}_{1}\right)}}\right]=r^{(n-1)} \Phi_{n}\left(\phi_{1}, \phi_{2}\right) \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi_{n}\left(\phi_{1}, \phi_{2}\right):=\left(\left[\frac{-\frac{1}{2} \bar{D} H_{n, \alpha}}{\left\|\mathrm{H}_{n, \alpha}\right\|_{L_{p}\left(\partial \mathbb{B}_{1}\right)}}\right]\right)_{\partial \mathbb{B}_{1}} \tag{23}
\end{equation*}
$$

Now, by the inner product $\langle f, g\rangle_{\partial \mathbb{B}_{1}(0)}=\int_{\partial \mathbb{B}_{1}(0)} \overline{f(x)} g(x) d \Gamma_{x}$, the orthogonality of the spherical monogenic $\Phi_{n}\left(\phi_{1}, \phi_{2}\right)$ (see [20]) in $L_{2}\left(\partial \mathbb{B}_{1}(0)\right)$. From (22) and (23) to (21), we have

$$
\begin{align*}
& \int_{\mathbb{B}_{1}(0)}\left|\sum_{n=0}^{\infty}\left[\frac{-\frac{1}{2} \bar{D} \mathrm{H}_{n, \alpha}}{\left(1-|x|^{2}\right)^{\frac{8 s+p}{4 p}}\left\|\mathrm{H}_{n, \alpha}\right\|_{L_{p}\left(\partial \mathbb{B}_{1}\right)}}\right] a_{n}\right|^{p}\left(1-|x|^{2}\right)^{\frac{3 \alpha q}{2}+3 s} d \mathbb{B}_{x} \\
= & \int_{0}^{1} \int_{\partial \mathbb{B}_{1}(0)}\left(\left|\sum_{n=0}^{\infty} \frac{r^{n-1}}{\left(1-r^{2}\right)^{\frac{8 s+p}{4 p}}} \Phi_{n}\left(\phi_{1}, \phi_{2}\right) a_{n}\right|^{2}\right)^{\frac{p}{2}} r^{2}\left(1-r^{2}\right)^{\frac{3 \alpha q}{2}+3 s} d \Gamma_{x} d r \\
= & \int_{0}^{1} \int_{\partial \mathbb{B}_{1}(0)}\left(\sum_{n=0}^{\infty} \sum_{j=0}^{\infty} \overline{a_{n}} \frac{r^{2 n-2}}{\left(1-r^{2}\right)^{\frac{8 s+p}{2 p}}} \overline{\Phi_{n}}\left(\phi_{1}, \phi_{2}\right) \Phi_{j}\left(\phi_{1}, \phi_{2}\right) a_{j}\right)^{\frac{p}{2}} r^{2}\left(1-r^{2}\right)^{\frac{3 \alpha q}{2}+3 s} d \Gamma_{x} d r=\mathrm{L} . \tag{24}
\end{align*}
$$

From Hölder's inequality, we have

$$
\begin{equation*}
\int_{\partial \mathbb{B}_{1}(0)}|f(x)|^{p} d \Gamma_{x} \geq(4 \pi)^{1-p}\left|\int_{\partial \mathbb{B}_{1}(0)} f(x) d \Gamma_{x}\right|^{p}, \quad(\text { where } 1 \leq p<\infty) \tag{25}
\end{equation*}
$$

From (25), for $2 \leq p<\infty$, we have

$$
\begin{align*}
\mathrm{L} & \geq(4 \pi)^{1-\frac{p}{2}} \int_{0}^{1}\left(\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} \frac{r^{2 n-2}}{\left(1-r^{2}\right)^{\frac{8 s+p}{2 p}}}\left\|\Phi_{n}\left(\phi_{1}, \phi_{2}\right)\right\|_{L_{2}\left(\partial \mathbb{B}_{1}\right)}^{2}\right)^{\frac{p}{2}} r^{2}\left(1-r^{2}\right)^{\frac{3 \alpha q}{2}+3 s} d r \\
& \geq(4 \pi)^{1-\frac{p}{2}} \int_{0}^{1}\left(\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} r^{2 n-2}\left\|\Phi_{n}\left(\phi_{1}, \phi_{2}\right)\right\|_{L_{2}\left(\partial \mathbb{B}_{1}\right)}^{2}\right)^{\frac{p}{2}} r^{3}\left(1-r^{2}\right)^{\frac{3 \alpha q}{2}+s-\frac{p}{4}} d r \tag{26}
\end{align*}
$$

From Corollary 11, we have

$$
\left\|\Phi_{n}\left(\phi_{1}, \phi_{2}\right)\right\|_{L_{2}\left(\partial \mathbb{B}_{1}\right)}^{2}=\frac{\left\|-\frac{1}{2} \bar{D} H_{n, \alpha}\right\|_{L_{2}\left(\partial \mathbb{B}_{1}\right)}}{\left\|\mathrm{H}_{n, \alpha}\right\|_{L_{p}\left(\partial \mathbb{B}_{1}\right)}} \geq \lambda n^{\frac{2+3 p}{2 p}} \geq \lambda n^{\frac{3}{2}}
$$

Then, from above we have

$$
\begin{align*}
\mathrm{L} & \geq(4 \pi)^{1-\frac{p}{2}} \lambda \int_{0}^{1}\left(\sum_{n=0}^{\infty} n^{\frac{3}{2}}\left|a_{n}\right|^{2} r^{2 n-2}\right)^{\frac{p}{2}} r^{3}\left(1-r^{2}\right)^{\frac{3 \alpha q}{2}+s-\frac{p}{4}} d r \\
& =\lambda_{1} \int_{0}^{1}\left(\sum_{n=0}^{\infty} n^{\frac{3}{2}}\left|a_{n}\right|^{2} r^{2 n-2}\right)^{\frac{p}{2}} r^{3}\left(1-r^{2}\right)^{\frac{3 \alpha q}{2}+s-\frac{p}{4}} d r \\
& =\frac{\lambda_{1}}{2} \int_{0}^{1}\left(\sum_{n=0}^{\infty} n^{\frac{3}{2}}\left|a_{n}\right|^{2} \xi^{n-1}\right)^{\frac{p}{2}} \xi(1-\xi)^{\frac{3 \alpha q}{2}+s-\frac{p}{4}} d \xi \\
& \geq \lambda_{3} \int_{0}^{1}\left(\sum_{n=0}^{\infty} n^{\frac{3}{2}}\left|a_{n}\right|^{2} \xi^{n-1}\right)^{\frac{p}{2}}(1-\xi)^{\frac{3 \alpha q}{2}+s-\frac{p}{4}} d \xi \tag{27}
\end{align*}
$$

where $\lambda_{j}, j=1,2,3$, are constants do not depending on n.
Now, by applying Theorem 8 in equation (27), we deduced that

$$
\begin{equation*}
\|f\|_{F_{G}^{\alpha}(p, q, s)} \geq \mathrm{L} \geq \frac{\lambda_{3}}{k} \sum_{n=0}^{\infty} 2^{-n\left(\frac{3 \alpha q}{2}+s-\frac{p}{4}+1\right)}\left(\sum_{k \in I_{n}} k^{\frac{3}{2}}\left|a_{k}\right|^{2}\right)^{\frac{p}{2}} \tag{28}
\end{equation*}
$$

where

$$
\sum_{k \in I_{n}} k^{\frac{3}{2}}\left|a_{k}\right|^{2}>\left(2^{n}\right)^{\frac{3}{2}}\left(\sum_{k \in I_{n}}\left|a_{k}\right|^{2}\right)^{\frac{p}{2}}
$$

Then,

$$
\begin{equation*}
\|f\|_{F_{G}^{\alpha}(p, q, s)} \geq \mathrm{L} \geq C \sum_{n=0}^{\infty} 2^{-n\left(\frac{3 \alpha q}{2}+s-p+1\right)}\left(\sum_{k \in I_{n}}\left|a_{k}\right|^{2}\right)^{\frac{p}{2}} \tag{29}
\end{equation*}
$$

From [21], we have

$$
\sum_{n=0}^{N} a_{n}^{p} \leq\left(\sum_{n=0}^{N} a_{n}^{p}\right)^{p} \leq N^{p-1} \sum_{n=0}^{N} a_{n}^{p}
$$

Then, we have

$$
\begin{equation*}
\|f\|_{F_{G}^{\alpha}(p, q, s)} \geq \mathrm{L} \geq C_{1} \sum_{n=0}^{\infty} 2^{-n\left(\frac{3 \alpha q}{2}+s-p+1\right)}\left(\sum_{k \in I_{n}}\left|a_{k}\right|\right)^{p} \tag{30}
\end{equation*}
$$

where C_{1} be a constants which do not depend on n. Then,

$$
\begin{equation*}
\sum_{n=0}^{\infty} 2^{-n\left(\frac{3 \alpha q}{2}+s-p+1\right)}\left(\sum_{k \in I_{n}}\left|a_{k}\right|\right)^{p}<\infty \tag{31}
\end{equation*}
$$

This completes the proof of theorem.
Theorem 13. Let $\alpha \geq 1,2 \leq p<\infty,-2<q<\infty$, and $s>0$, then we have

$$
\begin{equation*}
f(x)=\left(\sum_{n=0}^{\infty} \frac{\mathrm{H}_{n, \alpha}}{\left(1-|x|^{2}\right)^{\frac{8 s+p}{4 p}}\left\|\mathrm{H}_{n, \alpha}\right\|_{L_{p}\left(\partial \mathbb{B}_{1}\right)}} a_{n}\right) \in F_{G}^{\alpha}(p, q, s), \tag{32}
\end{equation*}
$$

if and only if,

$$
\begin{equation*}
\sum_{n=0}^{\infty} 2^{-n\left(\frac{3}{2} \alpha q+s-p+1\right)}\left(\sum_{k \in I_{n}}\left|a_{k}\right|\right)^{p}<\infty \tag{33}
\end{equation*}
$$

Proof. This theorem can be proved directly from Theorem 9 and Theorem 12.

4. Conclusion

We have introduce a new class of hyperholomorphic functions, which is also called $F_{G}^{\alpha}(p, q, s)$ spaces. For this class, we give some characterizations of the hyperholomorphic $F_{G}^{\alpha}(p, q, s)$ functions by the coefficients of certain lacunary series expansions in quaternion analysis.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: "The authors declare no conflict of interest."

References

[1] Altmann, S. L. (1989). Hamilton, Rodrigues, and the quaternion scandal.Mathematics Magazine,62 (5), 291-308.
[2] Ahmed, A. E. S. (2008). On weighted α-Besov spaces and α-Bloch spaces of quaternion-valued functions. Numerical Functional Analysis and Optimization, 29(9-10), 1064-1081.
[3] El-Sayed Ahmed, A., \& Asiri, F. (2015). Characterizations of Weighted Bloch Space by Q p, ω-Type Spaces of Quaternion-Valued Functions. Journal of Computational and Theoretical Nanoscience, 12(11), 4250-4255.
[4] Gürlebeck, K., Kähler, U., Shapiro, M. V., \& Tovar, L. M. (1999). On Q_{p}-spaces of quaternion-valued functions. Complex Variables and Elliptic Equations, 39(2), 115-135.
[5] Gürlebeck, K., \& Ahmed, A. E. S. (2004). On series expansions of hyperholomorphic Bq functions. In Advances in Analysis and Geometry (pp. 113-129). Birkhäuser, Basel.
[6] Malonek, H. (2003). Quaternions in applied sciences: A historical perspective of a mathematical concept. In Proc. International Kolloquium applications of computer science and mathematics in architecture and building industry, IKM (Vol. 16).
[7] Gärlebeck, K., Habetha, K., \& Sprößig, W. (2007). Holomorphic functions in the plane and n-dimensional space. Springer Science \& Business Media.
[8] Ablamowicz, R., \& Fauser, B. (2005). Mathematics of clifford-a maple package for clifford and graSSmann algebras. Advances in Applied Clifford Algebras, 15(2), 157-181.
[9] Ablamowicz, R. (2009). Computations with Clifford and Grassmann algebras. Advances in applied Clifford algebras, 19(3-4), 499.
[10] Ahmed, A. E. S., \& Omran, S. (2012). Weighted classes of quaternion-valued functions. Banach Journal of Mathematical Analysis, 6(2), 180-191.
[11] Swanhild, B. (2009). Harmonic Q_{p} spaces. Computational Methods and Function Theory, 9(1), 285-304.
[12] Reséndis, O. L. F., \& Tovar, S. L. M. (2004). Besov-Type Characterizations for Quaternione Bloch Functions. In Finite or Infinite Dimensional Complex Analysis and Applications (pp. 207-219). Springer, Boston, MA.
[13] Gürlebeck, K. (1990). Quaternionic analysis and elliptic boundary value problems. Int. Series of Numerical Mathematics, 89.
[14] Malonek, H. (1990). Power series representation for monogenic functions in based on a permutational product. Complex Variables and Elliptic Equations, 15(3), 181-191.
[15] Gürlebeck, K., \& Malonek, H. R. (2001). On strict inclusions of weighted Dirichlet spaces of monogenic functions. Bulletin of the Australian Mathematical Society, 64(1), 33-50.
[16] Avetisyan, K. L. (2007). Hardy-Bloch type spaces and lacunary series on the polydisk. Glasgow Mathematical Journal, 49(2), 345-356.
[17] Furdui, O. (2008). On a class of lacunary series in BMOA. Journal of Mathematical Analysis and Applications, 342(2), 773-779.
[18] Li, S., \& Stevic, S. (2009). Weighted-Hardy functions with Hadamard gaps on the unit ball. Applied Mathematics and Computation, 212(1), 229-233.
[19] Zhao, R. (1996). On a general family of function spaces (Vol. 105). Suomalainen tiedeakatemia.
[20] Brackx, F., Delanghe, R., \& Sommen, F. (1982). Clifford analysis (Vol. 76). Pitman Books Limited.
[21] Miao, J. (1992). A property of analytic functions with Hadamard gaps. Bulletin of the Australian Mathematical Society, 45(1), 105-112.
(C) 2019 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

